

Biodegradable Dissolved Organic Material

Experiment done by Haley Moon

Presented by Jimmy Tyler

Analysis by Jimmy Tyler, Jake Murphy, and Daniel Smith

Experiment Outline:

Jake: Experiment Background

Daniel: Data Analysis

Jimmy: Applications to Other Experiments

1. Goal is to compare this analysis to others that are analyzing effect of wildfires and anthropogenic factors on nutrient flow through an ecosystem.
2. Goal is to see if we can predict the BDOM of a sample after a treatment using only the properties observable before the treatment.
3. Goal is to generalize our results to other experiments in order to increase applicability.
4. Goal is to motivate further study into specific topics, and address follow-up questions.

Crandall Study Citations:

Citation: Crandall T, Jones E, Greenhalgh M, Frei RJ, Griffin N, Severe E, et al. (2021) Megafire affects stream sediment flux and dissolved organic matter reactivity, but land use dominates nutrient dynamics in semiarid watersheds. PLoS ONE 16(9): e0257733. <https://doi.org/10.1371/journal.pone.0257733>

Copyright: © 2021 Crandall et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Crandall Study Premise:

“Extremely low snowpack, record precipitation, and high average summer temperatures set the scene for the three large wildfires in the Utah Lake watershed that converged into a megafire in 2018.” - Crandall, 2021

- The Coal Hollow fire was started on August 4th by a lightning strike, and burned 128 km²
- The Bald Mountain fire was started on August 24th and burned 75 km²
- Pole Creek fire was started on September 6th and burned 413 km²

Together, these wildfires burned a contiguous area of 616 km², creating a megafire referred to as the Pole Creek Fire Complex.

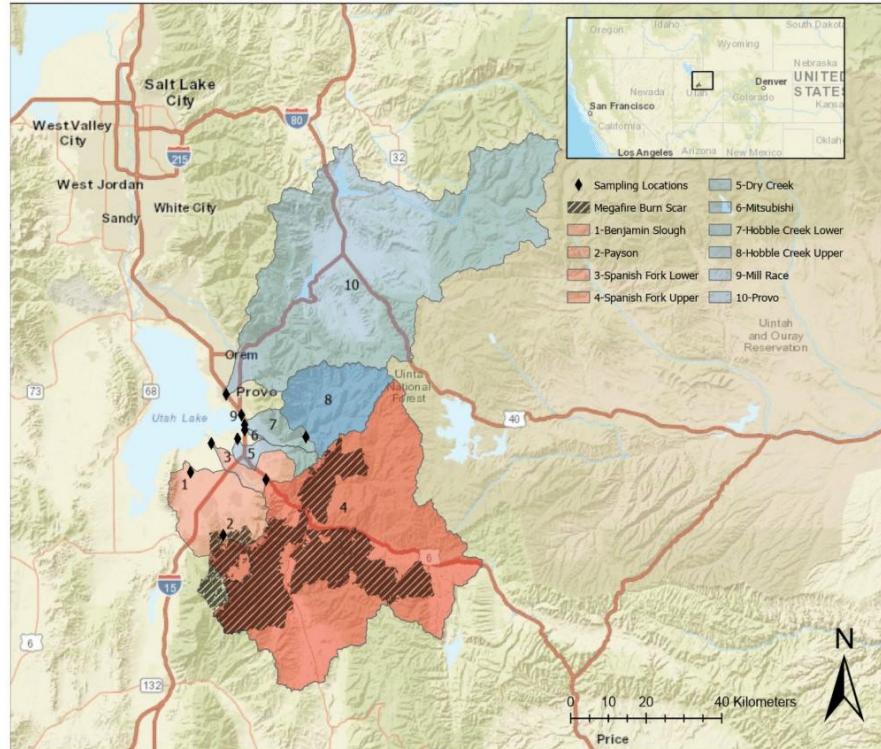


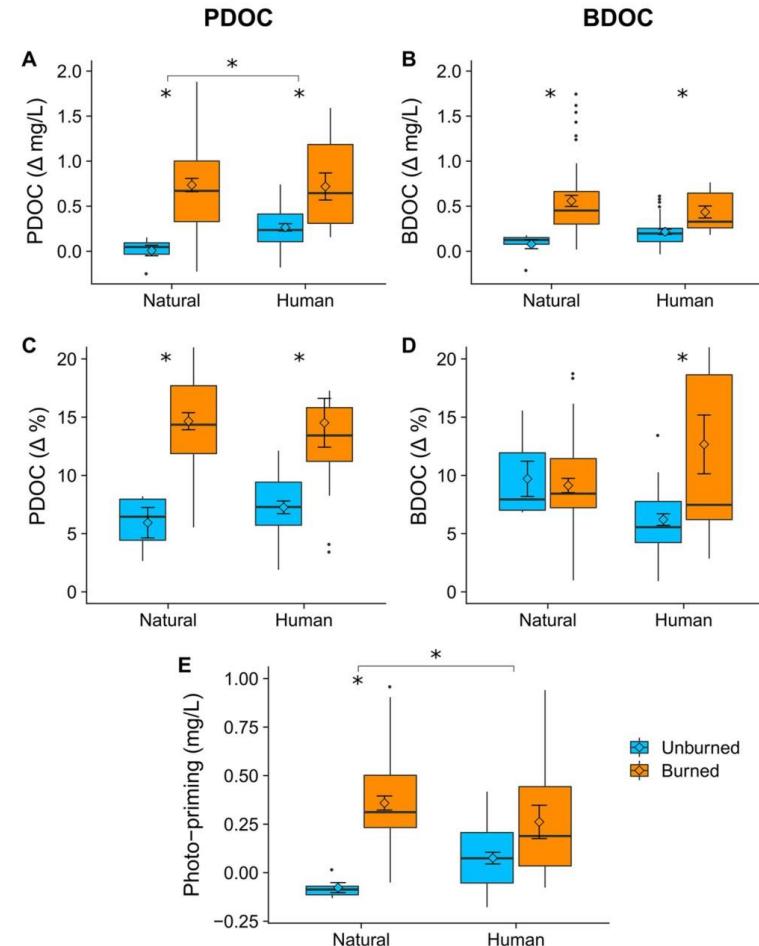
Fig 1. Map showing the megafire burn scar, sampling locations, and contributing watersheds. Watersheds are displayed as either red (burned) or blue (unburned) with numbers indicating the river or stream name in the legend. The map was created using opensource data from the USGS National Map and the Earth Resources Observation and Science Center.

Crandall: Utah Lake “Plume” of Sediment

Crandall Study Stats:

These are the stats for the Crandall Study site-specific data.

A lot of these are similar to the stats that we had for our initial properties that we use in our later machine learning analysis.


Table 1. Watershed characteristics of sampling sites within the Utah Lake watershed.

Site number and name	Area (km ²)	Burned (%)	Mean slope (°)	Urban (%)	Impervious surface (%)	Agriculture (%)	Forest (%)	Herbaceous (%)
1-Benjamin Slough	319	67	21	10.6	3.7	18.0	38.4	6.4
2-Payson*	54	90	29	2.68	0.0	0.0	82.9	0.5
3-Spanish Fork Lower	1712	24	32	1.69	0.4	8.0	56.3	5.5
4-Spanish Fork Upper*	1650	25	32	0.87	0.1	3.0	57.5	5.3
5-Dry Creek	30	0	2	54.5	23.8	15.0	2.98	8.6
6-Mitsubishi Race	3	0	1	61.2	28.0	0.1	2.81	1.8
7-Hobble Creek Lower	324	0	41	4.48	1.7	1.5	56.7	7.6
8-Hobble Creek Upper*	280	0	42	0.51	0.0	1.2	60	7.2
9-Mill Race	47	0	36	40.6	23.0	0.5	47.1	2.9
10-Provo River	1769	0	27	5.19	0.9	7.0	65.1	3.5

*Sites categorized as “natural” (less than 10% urban and agricultural land use)

Crandall Study Visualization:

- PDOC and BDOC are both measures of carbon content, comparable to our measure of BDOM.
- They are slightly connotatively different, and for anyone curious in this difference, you would have to read the Crandall Study.
- Note the similarity in their findings versus ours, on how fire affects carbon content.

Crandall Study: Results

“Why is burned BDOM so degradable? Contrary to our hypotheses, we observed higher photo and biodegradability at burned sampling locations.” - Crandall, 2021

- Expected that loss of plant matter and the high-temperature pyrogenic compounds during the megafire would result in less reactive compounds in burned watersheds.
- However, pyrogenic organic matter varies widely in composition and reactivity.
- The effects of combustion on organic matter properties depend on initial substrate (e.g. plant or soil sources), the characteristics of the combustion process (e.g. temperature, duration, and percentage consumption), and the degree of processing during subsequent transport to and through the hydrological network.

actual	lower	mid	upper	error	check
5.833333333	2.782855773036862	8.686344389485373	14.35215480426577	2.8350110564853734	Inside
11.31775	2.4694191854450778	9.66355926619003	14.470709067581433	1.6541904733809977	Inside
21.297	2.472409631363963	9.850681200513332	18.074931534914682	11.4463187994866669	Outside
3.0905	2.8627406185821616	3.9328015478523923	8.175140747953648	0.8423015478523923	Inside
4.0655	2.5400461570114268	5.302400032013596	8.11721749736577	1.2369000320135957	Inside
2.599333333	2.781073705242901	3.6656585022979696	7.138369798865203	1.0672251692979695	Outside
5.99	2.8069588791074147	6.37816846596484	7.780660951863208	0.38816846596483945	Inside
1.013	0.9335382022243592	1.74503751988815	1.7741047930406781	0.741503751988815	Inside
3.09925	2.450375648401112	2.876188318990592	6.163381339531945	0.22306168100994084	Inside
2.32625	2.806574854547827	8.09006430291997	10.04781996070475	0.2235606470859374	Inside
5.55215	2.806574854547827	5.946747028666241	9.91530242426641	0.39462202866624096	Inside
4.06215	2.7256163762856427	3.666796194976878	7.0494503487478495	0.395553805023212	Inside
3.001	2.6266313032748876	3.327007577126475	9.63800981438294	0.3260075771264752	Inside
4.10875	2.816891459363935	4.100153416996293	7.15494871099766	0.00859658300370647	Inside
9.364708333	2.80311597225502	10.77296941778362	14.27480223792678	1.4082610847836214	Inside
1.794166667	1.609030040818547	2.2453919255590273	9.586403582405246	0.4512252585590273	Inside
2.69025	1.7664191921793004	3.056866789217005	9.602982503557703	0.4476167892170051	Inside
5.431125	2.6711435352381954	4.12057226938028	7.06602926988030	1.3105527306197198	Inside
9.22475	2.806988791074147	8.973250562620555	15.0643174277968	0.2514994373794457	Inside
3.91375	1.8002962003081	2.9770489561149271	7.32655610343303	0.941901038850729	Inside
7.648375	2.8069588791074147	6.693478104405356	9.481767748716893	0.9548968955946435	Inside
3.788125	2.6266026363045287	4.750016356739382	7.0494503487478495	0.9668913567393824	Inside
3.697125	2.6371078489111235	5.289601824889967	7.814953184864897	1.592476824889967	Inside
2.046375	2.1180614688820736	4.661395342186634	4.495650733095208	2.6150203421866345	Outside
3.620625	2.61971610226927	3.4289935001046667	7.12747141469159	0.19163149989533323	Inside
8.76018815	2.6593465905027798	8.317747145392735	8.472669950358307	0.44244100460726443	Outside
4.12957865	2.8713643004113822	3.847785681556721	7.44557324297824	0.28179296844372903	Inside
2.825825	2.728382931989415	3.9838976410764078	7.216390855808944	1.158026410764078	Inside
3.054625	2.635219144928004	3.048701545379097	7.2569240531808745	0.005923454620905268	Inside
13.41033333	2.8069588791074147	17.581706082568587	22.196897113751085	4.171372752568587	Inside
6.504375	2.8069588791074147	8.24102426732978	12.059711909544122	1.7366492673297813	Inside
11.87954167	2.870982075817946	11.779948132534952	14.760522677082442	0.08004353746504833	Inside
3.098	2.816891459363935	3.1302328413310527	7.138369798865203	0.032232841331052864	Inside
10.96820833	2.8069588791074147	18.417013074245794	24.941665028416413	7.448804744245795	Inside
7.291166667	2.816891459363935	8.965983459643361	14.43017587020951	1.6748167926433615	Inside
1.2705	3.352336349608597	1.240660154702827	7.062054895661293	0.022433984529717232	Outside
9.08675	2.647365797153615	12.980036549529771	16.815821194264714	3.893286549529771	Inside
5.552125	2.8610476955952744	5.82301229207822	9.937281276522669	0.270887292078216	Inside
9.22925	2.861431720154862	7.73757095538188	10.477221122926839	1.4916790144618126	Inside

Motivation for Machine Learning Analysis:

- Eliminating the time-consuming process of testing and treating water samples.
- Eliminating the treatment wait-time, which can often be quite long. In our study, 28 days.
- Guessing carbon level is the first step in improving BDOM.
- Its cool. Seriously, I had a lot of fun!

This image will be explained further later, but is the output of my machine learning analysis on the test set.

actual	lower	mid	upper	error	check
5.833333333	2.782855773036862	8.686344389485373	14.35215480426577	2.8350110564853734	Inside
11.31775	2.4694191854450778	9.66355926619003	14.470709067581433	1.6541940733809977	Inside
21.297	2.472409631363963	9.85061200513332	18.074931354914682	11.446318799486666	Outside
3.0905	2.8627406185821616	3.9328015478523923	8.175140747953648	0.8423015478523923	Inside
4.0655	2.5400461570114268	5.302400032013596	8.11721749736577	1.2369000320135957	Inside
2.599333333	2.781073705242901	3.665585022979696	7.138369789865203	1.0672251692979695	Outside
5.99	2.806958879107417	6.37816846596484	7.780660951863208	0.38816846596483945	Inside
1.013	0.9335382022243592	1.74543731988815	1.7741047930406781	0.741035751988815	Inside
3.09295	2.450375648401112	2.876188318990592	6.163381339531945	0.22306168100994084	Inside
8.322625	2.806574854547827	8.099064305291407	10.047819960707475	0.22356069470859374	Inside
5.552125	2.806574854547827	5.9467470328666241	9.91530242466641	0.3946220866624096	Inside
4.062125	2.72561363762856427	3.6667696194976678	7.0494503487478495	0.3955353805023212	Inside
3.001	2.6266313032748876	3.327007577126475	9.63800891438294	0.3260075771264752	Inside
4.10875	2.816891459363935	4.100153416996293	7.15494871099766	0.00859658300370647	Inside
9.364708333	2.80311597225502	10.77296941778362	14.27480223792678	1.4082610847836214	Inside
1.794166667	1.609030040818547	2.2453919255590273	9.586403582405246	0.4512252585590273	Inside
2.60925	1.7664191921793004	3.056866789217005	9.602982503557703	0.4476167892170051	Inside
5.431125	2.6711435352381954	4.12057226938028	7.06602926988030	1.3105527306197198	Inside
9.22475	2.806958879107417	8.973250562620555	15.06435174277968	0.2514994373794457	Inside
3.91975	1.8000962003081	2.977048961149271	7.326555610343303	0.941901038850729	Inside
7.648375	2.806958879107417	6.693478104405356	9.481767748716893	0.95489689594046435	Inside
3.788125	2.6266026363045287	4.750016356739382	7.0494503487478495	0.9668913567393824	Inside
3.697125	2.6371078489111235	5.289601824889967	7.814953184864897	1.592476824889967	Inside
2.046375	2.118061468820736	4.661395342186634	4.495650733095208	2.6150203421866345	Outside
3.620625	2.61976102226927	3.4289935001046667	7.12747141469159	0.1916314998533323	Inside
8.76018815	2.6593465905027798	8.317747145392735	8.472669950358307	0.44244100460726443	Outside
4.12957865	2.8713643004113822	3.877785681556271	7.44557324297824	0.2817926844372903	Inside
2.825285	2.728382931989415	3.9838976410764078	7.216390855808944	1.1580226410764078	Inside
3.054625	2.635219144928004	3.048701545379079	7.2569240531808745	0.005923454620905268	Inside
13.4103333	2.806958879107417	17.581706082568587	22.19689711371085	4.1713725752658587	Inside
6.504375	2.806958879107417	8.24102426732978	12.059711909544122	1.7366492673297813	Inside
11.87954167	2.870982075817946	11.799498132534952	14.760522677082442	0.08004353746504833	Inside
3.098	2.816891459363935	3.1302328413310527	7.138369789865203	0.032232841331052864	Inside
10.96820833	2.806958879107417	18.417013074245794	24.941665028416413	7.448804744245795	Inside
7.291166667	2.816891459363935	8.965983459643361	14.43017587020951	1.6748167926433615	Inside
1.2705	3.352336349608597	1.240660154702827	7.062054895661293	0.022433984529717232	Outside
9.08675	2.647365797153615	12.980036549529771	16.815821194264714	3.893286549529771	Inside
5.552125	2.8610476955952744	5.82301229207822	9.937281276522669	0.270887292078216	Inside
9.22925	2.861431720154862	7.737570985538188	10.477221122926839	1.491679044618126	Inside

The only explanatory variables we considered were initial measurements. Though some variables, like site-specific data didn't change, others did, such as optical properties of samples. These were held in stasis using acidic cultures, and measured at the same time as other variables.

Explanatory Variables:

- Season(Trial), Treatment(CL,CD,NL,ND)
- Optical Properties: Fluorescence Index, BIX, HIX, Absorbance at 254 nanometers
- Average Precipitation over the last 12 months
- Site Specific Data: Drainage Area, Forestation Percentage, Developed Land Percentage, Land Percentage Impervious to fire, Herbaceous Land Percentage, slope
- Burn Level
- Sample Specific Data: Carbon Level at initial measurement (t0)

Response Variables:

- Carbon Level after treatment (t28)
- Percentage of change in carbon level (BDOM)

actual	lower	mid	upper	error	check
5.833333333	2.782855773036862	8.668344389485373	14.3521580426577	2.8350110564853734	Inside
11.31775	2.4694191854450778	9.66355926619003	14.470709067581433	1.6541940733809977	Inside
21.297	2.472409631363963	9.850681200513332	18.074931354914682	11.4463187994866669	Outside
3.0905	2.8627406185821616	3.9328015478523923	8.175140747953648	0.8423015478523923	Inside
4.0655	2.5400461570114268	5.302400032013596	8.11721749736577	1.2369000320135957	Inside
2.599333333	2.781073705242901	3.6665585022979696	7.138369789865203	1.067251692979695	Outside
5.99	2.806958879107147	6.37816846596484	7.780660951863208	0.38816846596483945	Inside
1.013	0.9335382022243592	1.74549371988815	1.7741047930406781	0.741503751988815	Inside
3.0925	2.450375648401112	2.8761883189900592	6.163381339531945	0.22306168100994084	Inside
8.32625	2.806574854547827	8.090064305291407	10.047819960707475	0.22356069470859374	Inside
5.55215	2.806574854547827	5.9467470328666241	9.91530242466461	0.394622086624096	Inside
4.06215	2.7256163762856427	3.6667696194976678	7.0494503487478495	0.395553805023212	Inside
3.001	2.6266313032748876	3.327007577126475	9.63800891438294	0.3260075771264752	Inside
4.10875	2.816891459363935	4.100153416996293	7.15494871099766	0.00859658300370647	Inside
9.364708333	2.80311597225502	10.77296941778362	14.27480223792678	1.4082610847836214	Inside
1.794166667	1.60903004081547	2.2453919255590273	9.586403582405246	0.4512252585590273	Inside
2.60925	1.7664191921793004	3.056866789217005	9.602982503557703	0.4476167892170051	Inside
5.431125	2.671143532381954	4.12057226938028	7.0660292698030	1.3105527306197198	Inside
9.22475	2.80698871071471	8.9732050562620555	15.06435174277968	0.2514994373794457	Inside
3.91375	1.8002962003081	2.977848961149271	7.326555610343303	0.941903038850729	Inside
7.648375	2.806958879107147	6.693478104405356	9.481767748716893	0.9548968955946435	Inside
3.788125	2.6266206363045287	4.750016356739382	7.0494503487478495	0.966891567393824	Inside
3.697125	2.6371078489111235	5.289601824889967	7.814953184864897	1.592476824889967	Inside
2.046375	2.118061468820736	4.661395342186634	4.495650733095208	2.6150203421866345	Outside
3.620625	2.61971610226927	3.4289935001046667	7.12747141469159	0.1916314998533323	Inside
8.76018815	2.6593465905027798	8.317747145392735	8.472669950358307	0.44244100460726443	Outside
4.12957865	2.8713643004113822	3.847785681556271	7.44557324297824	0.2817926844372903	Inside
2.825825	2.728382931899415	3.9838976410764078	7.216390855808944	1.1580226410764078	Inside
3.054625	2.63219144928004	3.048701545379097	7.2569240531807845	0.005923454620905268	Inside
13.4103333	2.806958879107147	17.581070682568587	22.196897113751085	4.1713725752658587	Inside
6.504375	2.806958879107147	8.24102426732978	12.059711909544122	1.7366492673297813	Inside
11.8795167	2.870982075817946	11.799498132534952	14.760522677082442	0.08004353746504833	Inside
3.098	2.816891459363935	3.1302328413310527	7.138369789865203	0.032232841331052864	Inside
10.96820833	2.806958879107147	18.417013074245794	24.941665028416413	7.448804744245795	Inside
7.291166667	2.816891459363935	8.965983459643361	14.43017587020951	1.6748167926433615	Inside
1.2705	3.3523363495608597	1.240860154702827	7.062054895661293	0.022433984529717232	Outside
9.08675	2.647365797153615	12.980036549529771	16.815821194267414	3.893268549529771	Inside
5.552125	2.8610476955952744	5.82301229207822	9.937281276522669	0.270887292078216	Inside
9.22925	2.861431720154862	7.73757095538188	10.477221122926839	1.491679044618126	Inside

Methods: Main Package utilized was Sci-Kit Learn

Data was Preprocessed:

- First, our goal was to predict t28 and BDOM
- Second, we shuffled the samples to ensure no confounding pattern in the data would skew our results.
- Third, encoding to categorically represent our treatment values
- Fourth, we split our data into four groups at a rate of 80/20.
- Finally, we utilized standard feature scaling of numerical values for increased accuracy of our machine learning algorithm.

Data was treated using Multivariable Linear Machine Learning Techniques:

- Sci-Kit Learn Linear Regression algorithms were implemented
- Further tests were conducted using dnn's in an unsupervised environment from Sci-Kit Learn, but these were not as accurate as the Linear methods.
- Potential for dnn's are still possible, discussed later.

Confidence Interval Predictions Test for BDOM

Applications to past studies

- Historically forest fires cleared old growth, but with Climate Change, worry is that changing fires will affect nutrient flow through an environment
- As fires change, nutrient flow through the system changes, and hence recovery from fires, and regrowth, changes
- One major concern is that nutrients will flow out of a system based off of water-shed, as opposed to stay in the system. Crandall Study suggests BDOM is a measure of this
- What the Crandall study didn't consider which we studied were a few additional factors:
 - The burn level of a specific location
 - The affect changing over time
 - The treatments Haley conducted on the water samples
 - Correlation between specific optical properties of water samples and their BDOM

Motivations for Future Studies

- One extremely interesting problem discussed in the Crandall study is the changing shape of modern classified “megafires”.
- Megafires typically would be not very elliptical in shape, but rather would “branch out”. Speculation is made in the paper that modern megafires are now becoming more elliptical in nature due to the affects of man-made agricultural and urban development.
- The reason why this might be a problem, is that regrowth may be a factor of distance vegetation seed has to travel to get to a fertile soil, as well as how much of the BDOM in the water is retained in that time period.
- The question then remains to determine if the convexity of a fire pattern is correlated to its BDOM drop over time.

Motivations for Future Studies

- We could not determine causality between topological data and BDOM nutrient flow. This is because we didn't do experiments controlling for other variables.
- This gap is an important one to try and bridge if our data and models are going to have any widespread application.
- If we could predict the flow of nutrients through a system before that has happened, we can begin to take steps to intervene where necessary.
- However, experimental studies, as opposed to observational studies, are in this area of course unethical, as it would constitute starting megafires.

Motivations for Future Studies

Future Possible Improvement for the Deep Neural Network:

- If we utilized a mixture of supervised/unsupervised learning in a deep neural network with dedicated layers its possible that this could keep the upper bound on the t_{28} value from getting so high. This might eliminate the skew
- Our data was unbalanced. This could cause a bias in the estimate of the carbon level, as the underlying dnn simply tries to optimize the loss function by any means necessary
- Its highly likely more data would allow for narrowing the confidence interval we found to a more applicable level

Questions/Comments?

Thank you very much!